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Abstract 
 

The next generation of satellites for distributed 

satellite missions will exploit the latest computing and 

wireless technologies for intersatellite connectivity. These 

missions enable opportunities in multiple-point sensing, 

greater communications capabilities and spacecraft 

redundancy. Requirements for processing and network 

capabilities have risen dramatically to meet strict needs 

of the end user and overcome various space disturbances 

and perturbations once in orbit. One such problem lies 

with a ‘cluster’ of satellites that have been deployed from 

the same launcher where they will be close together so 

ad-hoc technologies allow satellite communication. This 

paper addresses the hardware and software requirements 

for distributed computing opportunities using 

intersatellite connectivity. A system-on-a-chip design is 

proposed; including a general purpose processor core 

and a dedicated Java processing core to adapt and 

reconfigure the topology using real-time software Agent 

applications. This will make the network resilient to 

various space perturbations and ensure mission longevity. 

Integration of these two non-heterogeneous cores in a 

picosatellite technology demonstrator testbed and 

network topology reconfigurability procedures are also 

outlined. 

 

1. Introduction 
 

Distributed satellite systems (DSS) aim at offering a 

number of  unique mission advantages including 

redundancy, lower cost, flexibility, multi-point sensing 

and greater communication capabilities [1, 2]. There are 

many types of DSS including: 

• Formation Flying where a very strict formation is 

required to perform a mission, such as that found in 

synthetic aperture radar (SAR); 

• Clustering Missions where satellites are loosely 

coupled around each other to perform a mission; 

• Virtual Satellite Missions (also called fractionated 

missions) where a satellite has its subsystems divided 

onto multiple craft to perform a mission. E.g. one 

craft for computing, one craft for imaging, etc. 

 

But these advanced missions have some very 

challenging functional requirements including attitude and 

orbit control, intersatellite links and flexible on-board 

computing.  

 

A distributed satellite mission in low Earth orbit 

(LEO) is considered where multiple very small satellites 

are deployed at the same time in multiple planes and 

orbits to form a cluster of satellites. These satellites can 

then form an ad-hoc network for multiple-point sensing of 

Earth’s atmosphere; analogous to a ‘wireless sensor 

network’ (WSN) [3]. Like a WSN, there is typically one 

communications link or ‘sink’ to an end user, in this case, 

a groundstation. The need for a cluster of satellites here is 

to ensure data can be recorded from multiple payloads at a 

specific time at various non-specific local locations. An 

example scenario is found in Fig. 1 and can be expanded 

to include tens or even hundreds of satellites, as 

envisioned by NASA’s ANTs Mission [4]. 

 

 
 

Figure 1. An example Cluster Scenario 

 

Satellite drift along with other perturbations such as 

Earth’s geophysical forces, variations in Earth’s 

atmosphere and solar radiation pressure greatly affect the 
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relative distances between the satellites and thus the 

network’s connectivity and topology over time. When 

initially deployed from the launcher the satellite network 

will be close together with good connectivity. A ‘server’ 

satellite is typically predefined and other ‘client’ satellites 

can connect to it. But over many orbits, perturbations will 

affect the satellite network’s connectivity by their relative 

distances and the network topology so that the server 

satellite may not be the most central to the network. At 

this point, connectivity to ground can be poor and 

intermittent with large periods in a ‘disconnected’ 

environment. If the server satellite is no longer the optimal 

central satellite or if the server satellite is damaged/ 

cannot perform its role, a new satellite or configuration is 

needed. To solve this problem, a dual-core processor with 

network reconfigurability functionality is proposed for 

distributed computing operations.  

 

The network and distributed computing data requirements 

for the chosen cluster scenario can be summarized as 

follows: 

 

Node Level Functionality Requirements (individual 

satellite level): 

• Distributed computing platform  

• Storing and forwarding of data using distributed 

computing paradigms; including: 

o ‘High Data’ or ‘High Priority’ Applications 

using a Client/ Server paradigm – Payload data 

through the network such as imaging data, 

larger science payloads & data aggregation. 

o ‘Low Data’ Applications using a Peer-to-Peer 

(P2P) paradigm Telemetry, location and 

velocity changes such as telemetry, “byte” size 

payload data (GPS, science payload 

measurements) & network management data. 

 

Network Level Functionality Requirements (multiple 

satellite level): 

• Ad-hoc intersatellite networking capabilities for 

initial formation. 

• Adaptable and redundant ground-link 

communication schemes, i.e. main ‘sink’ to ground. 

• Proactive and reactive topology schemes to mobility. 

 

The development of an effective space network will 

also require other characteristics from mobile ad-hoc 

networks (MANETs) including network mobility and 

scalability. 

The latest terrestrial distributed and networked 

systems are now using Agent systems to cope with large 

scale remotely located services and systems [5]. Relevant 

Agents systems are included in groundstations to aid in 

image signal processing [6] and on-board satellites for in-

situ autonomous behaviours [7]. Agents are a higher 

abstraction of programming to deal with complex 

computing problems. By executing behaviorally and 

assigning an agent a ‘role’, communication interactions 

and autonomous actions become easier to realize. This 

allows them to work ‘proactively’ and ‘reactively’ to their 

environment and to any given task. They can be proactive 

when finding new communications routes in a networked 

environment and reactive to disconnections, low 

bandwidths or high latencies [8]. Unlike a typical 

distributed computing platform that typically has fixed 

network characteristics, agents could be employed to 

overcome and discover their given network situation. On a 

satellite, as few assumptions as possible should be made 

for the connection reliability over inter-satellite links 

(bandwidth, latencies, number of connections, etc). An 

agent could be designed to discover these characteristics 

and make the software and network operations more 

reliable and robust. 
 

In practical experiments, the Java Agent 

DEvelopment framework and the Light Extensible Agent 

Platform (JADE-LEAP) [9] is adopted to communicate 

over an ad-hoc IEEE 802.11 wireless link using a number 

of protocols over multiple laptops. JADE-LEAP is a Java 

based Agent Development environment middleware for 

embedded devices and other resources constrained 

devices using wireless links to develop Agent systems and 

novel application areas such as web or service orientated 

computing. The JADE-LEAP platform is used here due to 

its light-weight footprint, its conformity to the Foundation 

of Intelligent and Physical Agents (FIPA) specifications 

[10] and a large community of users. 

 

Agent systems are written in Java, which is unsuited to 

real-time mission-critical embedded systems due to 

problems with large standard libraries, a slow and 

undeterminable execution model, and dynamic class 

loading execution times; to name a few reasons. However, 

in recent years, improvements in library size and memory 

technologies have enabled Java on mobile phones and 

PDAs (without floating point support and other Java 

functionalities). But these tools are still not real-time or 

time predictable. To counter this problem, a deterministic 

Java processor is targeted to run Agents for real-time 

applications. 

 

This paper, carried out under the ESPACENET 

project [11],  presents a system-on-a-chip (SoC) design 

implemented in a field programmable gate array (FPGA) 

comprising a general purpose processor and a specific 

processor for real-time Java enabled computing; targeting 

a picosatellite demonstration mission. Section 2 describes 

the picosatellite demonstrator design. Section 3 presents 
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the dual-core processor design. Section 4 discusses the 

integration between the general purpose processor core 

and dedicated Java processing core. Section 5 introduces 

network topology reconfiguration issues. Section 6 

concludes the paper. 

 

2. Picosatellite Demonstrator Design 
 

Embedded hardware technology is now available for 

designing, building and launching picosatellites. This 

project aims at using the standard picosatellite platform 

CubeSat [12]. For fast prototyping, commercial-off-the-

shelf (COTS) components/boards are chosen, to develop a 

technology demonstrator testbed. Parts used in the design 

include: 

• Flight OBC and satellite chassis from Pumpkin [13] 

• Power module from Clyde-Space [14] 

• SGR-05 GPS module from SSTL [15] 

• MHX transceiver from Microhard Systems [16] 

• PF5100 Virtex-4 FPGA FX60 Board for SoC [17] 

• IEEE 802.11 PC/104 Board from Elcard [18] 

 

 

Figure 2. CubeSat Platform with Flight Module, IEEE 

802.11 Board and FPGA Board 

The CubeSat platform is a 10 x 10 x 10 cm standard 

bus structure weighing at 1 kg, which is compatible with 

the PC104 format. The CubeSat bus also comes in double 

(2U) and triple unit (3U) sizes to conform to the P-POD 

deployment mechanism. The CubeSat Kit platform 

provides a standard COTS solution to develop new 

technologies. Research into all current CubeSat missions 

shows that reliability and simplicity are key requirements 

to ensure success, whilst having more complex systems as 

separate payloads. This design follows trends to ensure 

that our satellite can achieve multiple objectives: from 

successful deployment, establishing communications and 

turning on/ off experimental payloads. The current 

demonstrator design can be seen in Fig. 2, with the Flight 

Module, IEEE 802.11 PC/104 board and FPGA Board 

attached on the left, for integration, and the structure on 

the right, depicting the final satellite. 

 

The picosatellite nodes must be computationally able 

to run code on the satellite to optimize the network’s 

ability to perform the mission (e.g. make decisions from 

complex algorithms to decide which satellite has the 

resources to communicate to ground) using intersatellite 

links. This will require additional hardware such as CPU, 

storage and RAM memory, along with added software 

resources such as an operating system, distributed 

computing environment and applications; all constrained 

in the CubeSat dimensions.  

 

For a ‘technology demonstration’ mission, the payload 

design must include all the necessary components for the 

complete distributed computing platform, with 

communication capabilities, power systems and payloads. 

To ensure reliability in space, a new COTS based satellite 

bus architecture is proposed that treats the FPGA board, 

the IEEE 802.11 communications board and a camera as 

payloads, as shown in Fig. 3. 

 

 

Figure 3. Demonstrator Satellite Architecture 

This new COTS architecture is primarily controlled by 

the Flight Module board (FM430 OBC) and uses the SoC 

design to act as a hardware and software mediator for 

differing payload modes in the mission. These differing 

modes can include soft resets or various sleep modes but 

also hard resets and on/off switching for varying duty 

cycles in orbit. This will ensure that payloads can be 

precisely controlled. Due to the COTS nature of the 

design, the SoC board is also used to interface between 

various buses such as I2C, SPI, PCI and Ethernet for this 

demonstrator. 

 

3. Dual-Core Processor Design 
 

The proposed solution for this computing problem is a 

dual-core system to provide node level and network level 

functionality. The node level functionality is achieved 

using the LEON3 processor [19]; a general purpose soft-

core processor from Gaisler Research which is a fully 
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compliant SPARC V8 architecture with various 

functionality through an extensive IP library. The LEON3 

processor, adopted by ESA as the main CPU for future 

on-board computers since the end of 2006 [20], is used for 

typical processing and ‘number crunching’ capabilities 

such as image compression. As previously described, to 

accommodate an agent computing environment, a Java 

Virtual Machine (JVM) or Java Runtime Environment 

(JRE) is required to provide a heterogeneous platform on 

which to realise a communication medium between 

various platforms. 

 

 

Figure 4. Overview of LEON3 and JOP Design 

 

As ‘Just in Time’ (JIT) compilation at runtime is far 

from time deterministic for embedded real-time critical 

systems, this work also presents the use of an open-source 

Java specific processor called Java Optimised Processor 

(or JOP) [21] to enable real-time Java functionality on-

board satellite systems. JOP is chosen as it is the smallest 

and fastest Java core to date. JOP is a RISC and stack 

based architecture used to execute Java bytecodes using 

microcode instructions. By utilizing JOP in an FPGA 

along with the LEON3 processor, the benefits include 

moving software to hardware (reducing the memory 

footprint with increased FPGA utilisation and increased 

speedup) and enabling Java applications, such as Agents, 

for real-time applications. The system architecture can be 

seen in Fig. 4 where JOP is integrated for a 

communications co-processor with the LEON3 using the 

AMBA bus. 

 

3.1. Design Considerations 
 

In the FPGA, there must be a memory sharing system 

between the two cores for access to external RAM. To 

reflect the multi-layered software design (see Fig. 5), a 

clearly defined inter process communication (IPC) or bus 

scheme is also required. In software, caches between the 

two cores must retain coherency and in the event of a core 

failure, the other must be able to act for a soft recovery or 

even reconfigure in the event of a single effect upsets or 

latch-ups (SEUs and SELs respectively) [3]. 

 
Figure 5. Hardware & Software Layer Design 

 

The systems must have a low memory footprint (with 

operating environment and network stack) and still be 

real-time. A comparison of the memory footprint and 

functionality which looks at previous solutions to this 

problem can be found in Table 1, where there are three 

options considered: 

1. A CORBA  Middleware based implementation [22]; 

2. The standard Java libraries and software runtime 

used by PCs; 

3. A new hardware/ software co-design where the 

standard Java runtime is replaced by hardware with 

CLDC and pjava. 

 

Connection Limited Device configuration (CLDC) 

[23] and PersonalJava (pjava) are designed for the devices 

with intermittent network connections, slow processors 

and limited memory such as mobile phones, two-way 

pagers and PDAs – making them ideal to run in real-time 

on the JOP processor. These devices require either 16-or 

32-bit CPUs and a minimum of 128 KB to 512 KB of 

RAM for the Java platform implementation and associated 

applications. The full JRE 1.4 requires over 15 MB alone 

and is a major deterrent for using Java on embedded 

devices but dynamic class parsers are now available to 

help minimize the application to a very small size. From 

Table 1, it can be seen that the third option offers the 

smallest memory footprint whilst retaining real-time 

functionality. Here, pjava, CLDC 1.0, JADE-LEAP and 

designed Agents has been reduced to 1.1 MB. 

Table 1. Memory Footprint Comparison 

 

OSI Software Layer Method Size 

(MB) 

Real-

time 

1. Full Software using CORBA 

(LEON3 + RTEMS, C++, ORB, 802.11 

Driver, TCP/IP, Dyn. Lib.) [22] 

1.739 Y 

2. Full Software using Java 

(LEON3 + RTEMS, JRE 1.4 Std. Lib, 

CLDC 1.0) 

>16.000 N 

3. Hardware/ Software Co-Design 

(LEON3 + JOP + pjava, CLDC 1.0 + 

JADE-LEAP) 

1.106 Y 

 

 

GR-XC3C-1500 FPGA 

LEON3 JOP 

RTEMS 

JADE-LEAP 

CLDC + pjava 

Agents  

Applications Software Layers 

3. Application 

2. Network 

1. Session 

 

Hardware Layers 
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3.2. Shared Memory and Caches 
 

Multi-core system designs use shared memory for a 

fast form of IPC between the cores. Once the memory has 

been mapped, core synchronization is required between 

the processes for storing or fetching data to and from 

shared memory. The synchronization is implemented 

using the open-source AMBA2 Bus from ARM [24]; and 

more specifically, the Advanced High-Performance 

(AHB) Bus. The AHB Bus acts as the backbone in many 

SoC cores and is adopted here to provide connection 

between the cores, on-chip memories and off-chip 

external memory interfaces from various memory vendors. 

The AHB Bus operates bus arbitration to AHB Masters 

and Slaves where the core is first requested, addressed, 

granted access, and locked for use before finally being 

released to the arbiter. 

 

The LEON3 system implements a standard data and 

instruction cache but JOP implements a ‘stack’ cache for 

data and ‘method’ cache for instructions which is 

designed for real-time worst case execution time (WCET) 

analysis. JOP’s unique design, a hardware implementation 

of a JRE (at v 1.1) implements a simplified garbage 

collection (GC) model using the Real-Time Specification 

for Java [25] (RTSJ) which schedules a GC thread for 

automatic memory management. JOP’s 512 KB cache size 

was determined by a previous analysis of JRE 1.1 method 

lengths being 98% < 512 KB [26]. The fault tolerant 

version of LEON3 has a configurable cache and memory 

system designed to be tolerable to SEUs or SELs in the 

space environment with protected on-chip memories using 

triple modular redundancy (TMR), parity checking or 

duplication [27]. As an enhancement to JOP’s 

functionality, the existing JRE must be upgraded to a 

minimum of version 1.4 to run the JADE-LEAP Agent 

environment. To achieve this, new methods of the CLDC 

Stack have been added to JOP’s instruction set at a 

simulation level to better support networking. 
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Figure 6. JADE-LEAP Memory Usage under CDC-1.0 

 

An analysis of JADE-LEAP methods was performed 

to check the heap usage, specifically the DRAM allocated 

for the application, to show that JADE-LEAP requires 

between 750 KB to 2.1 MB of memory as shown in Fig. 

6. As this memory size cannot be implemented on-chip, 

off-chip solutions are required. The current SoC solution 

can be seen in Fig. 7. where the cores implemented and 

memories have been determined. The Virtex-4 FPGA 

AHB 

Arbiter 
AMBA2 AHB Bus 

LEON3 Core (AHB Master) 

D & I Cache 

RAM 8 KB 

Register 

544 B 

Mem. Controller 

(APB Slave) 

10/100 Ethernet 

(AHB Master) 

SoC / FPGA 

Solution 
JOP Core (AHB Master) 

Stack 

Cache 1 KB 

Method Cache 

1 KB 

Stack SRAM 

256 B 

Debug UART 

(AHB Master) 

Off-Chip Memory 

256 MB 

SDRAM 

2 MB 

ZBT RAM 

8 MB 

FLASH 

Figure 7. System-on-Chip Block Diagram 

JTAG Debug 

(AHB Master) 
AMBA2 APB Bus (Slave) 

Generic UART 
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General Purpose 
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FX60 Board is targeted as it is used in the CubeSat 

design. Distributing the caches and memory can have two 

major benefits: 1) scaling the memory bandwidth and 2) a 

reduction in access time to local memory. This method is 

typically used to support larger processor counts such as 

with multiple LEON3 or Network-on-Chip (NoC) designs. 

This fully distributed shared memory approach will 

require higher IPC bandwidth where higher latencies will 

be found. 

 

4. Dual-Core Processor Implementation 
 

The advantage of using multiple cores on one 

configurable device is that a mix of technologies can be 

used, making the designs very versatile with differing 

memory systems and IP Cores but with high time and 

design costs. This is why the JOP core is integrated in 

such a way that it can be added to the Gaisler IP Core 

Library (or GRLIB) [28]. Integration thus far has included 

the JOP processor as an AHB Bus Master wrapped for 

interfacing purposes and connections to a reduced LEON3 

with only necessary IP cores via the AHB Arbiter and 

AHB Bus. 

 

Integration Configuration: The implemented SoC 

solution includes the following important cores 

implemented in the design: 

• LEON3 Central Processing Unit (CPU) 

• AMBA Bus: AHB (high speed) & APB (peripheral) 

• Debug Support Unit (DSU) & JTAG Debug UART 

• JOP Wrapper  

• ESA Memory Controller 

 

The LEON3 is used as the main controller in the 

FPGA. The AHB Bus provided high speed 

communication between internal cores. The APB Bus 

provides communication to external peripherals, such as 

memory and other I/O. The DSU and debug UART 

provide useful debugging  information from the FPGA 

device. The JOP wrapper has the main JOP core, an AHB 

slave to communicate with the LEON3 processor and an 

APB slave for memory and I/O communication. The 

memory controller allows the synchronization between the 

SoC signals and external components. 

 

Timing Results: Current synthesis results give a 

maximum frequency of 37.398 MHz, half the usual 

operating frequency of LEON3 and JOP. Multiple AHB 

clock signals (also called dynamic clock switching) can be 

used to allow the processor to reach higher performance. 

The three WCET signals were also found in paths 

between: 

1. LEON3 CPU and AMBA memory controller 

(11.392 ns through logic, 22.032 ns through routing) 

2. LEON3 CPU and JOP AHB Master interface (5.128 

ns through logic, 10.773 ns through routing) 

3. JOP Cache and JOP Bytecode Address (2.255 ns 

through logic, 4.582 ns through routing) 

 

This result highlights the need for optimizing for speed 

rather than area to decrease the heavy routing latencies in 

the design. A trade-off between the area and speed of the 

SoC design is usually required to control the 

communication systems. A system clock speed of 40 MHz 

(periodic time of 25 ns), when compared to the IEEE 

802.11 MAC schemes measured in milliseconds, will be 

sufficient for on-board systems. 

 

Table 2 presents the difference in on-chip logic cell 

(LC) utilization between a full LEON3 (with FPU & 

MMU), the JOP with an AHB interface and finally the 

combined reduced LEON3 and JOP with AHB interfaces 

(without FPU & MMU). By making the design application 

specific, we can utilize and ensure power efficiency in 

FPGAs. 

 
Table 2. Summary of Integration Utilisation on GR-

XC3C-1500 FPGA Board 

 

Component 
LCs 

Used 

Full LEON3 CPU + AMBA Bus System 7546 

JOP CPU + AMBA Interface 3252 

Reduced LEON3 + JOP + AMBA Bus 8770 

 

Memory Trade-off: There is a trade-off between on and 

off chip memory, specifically between speed and power 

requirements. SRAM although fast and on-chip will 

increase power consumption and logic blocks or cells 

required on the FPGA. DRAM will usually require an off-

chip device and is typically 100 times slower that SRAM 

(not including bus arbitration latencies) but is a very dense 

memory technology. Power consumption of the complete 

dual-processor design and the current memory 

configuration shown in Fig. 7 is estimated in Xilinx’s 

XPower at 2.33 W  with 1.76 W used in memory 

interfacing. This, again, highlights the need for an 

efficient memory system. 

 
Future work includes reading/ writing to the AHB bus 

from the JOP core, writing software for the LEON3 under 

RTEMS to implement network reconfigurability and 

testing the SoC design in the satellite cluster scenario 

using a digital interface with a desktop computer to 

emulate signals coming to and from the satellite. 
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5. Network Topology Reconfiguration 

Procedure 
 

In this Section, a novel dual-core startup procedure is 

presented to deal with situations that require a hard reset, 

soft reset and network topology change. Fig. 9 shows an 

overview of the flow in which hardware and software 

resources are discovered so that network topology can be 

best reconfigured by better capable satellites. The stages 

are described below: 

 

Stage 1: Startup FPGA Bus System & LEON3: Upon 

startup, each AMBA core sends its ‘Plug & Play’ signals 

to the AHB controller which then decodes the values and 

generates the correct select signals. The LEON3 is started 

where core identification and system memory along with 

starting tasks (or other existing loads) can be discovered. 

 

Stage 2: Startup JOP & JADE-LEAP: JOP loads the 

main memory microcode from Flash and then the Boot() 

method is invoked to start running Java programs. The 

memory is then measured, GC is performed to clean the 

cache and initialize internal data structures. Class methods 

are then invoked and the Main() method is then invoked to 

start the Java application with argument passing to 

configure and optimize JADE-LEAP for satellite’s role in 

the network topology and services. 

 

Stage 3: Network Topology Refresh: To initialize, 

check or change the network topology, an IPC scheme is 

used that can soft-reset JADE-LEAP in differing 

configurations with differing services. An Agent can 

discover local data and identify services and existing 

interfaces or functionalities that the satellite has to offer 

the network. This discovery of local node level resources 

is defined as the ‘Capability Function’ (CF). It describes 

the relationship between total resources and current loads 

with a multiplication factor ω associated to the property 

and readings taken with regards to time t as follows:  

 

)(5)(4

)(3)(2)(1

tCLtMR

tBPtPPtMEM
CF

×+×

×+×+×
=

ωω

ωωω
  (1) 

 

where, MEM = Memory Available (RAM size), PP = 

Processing Power, BP = Battery Power, MR = Mobility 

Rating (a function of speed and acceleration), CL = 

Computing Load (existing on the satellite). 

 

The “usefulness” value of a satellite node obtained 

from equation (1) can be used for a number of satellite 

management applications. These include routing 

applications, where only “useful” satellites are select when 

routing high priority data, or for when topology 

reconfiguration is required so that a “useful” and reliable 

satellite is selected as the sink to ground. 

 

6. Conclusions 
 

The unique problem presented in this paper is to 

overcome ‘disconnected’ and highly mobile space 

requirements for distributed computing in satellite 

networks for scenarios such as event monitoring, space 

vehicle inspection and even deep space exploration. To 

enable the latest Agent based distributed computing 

systems, a new dual core SoC design is proposed for real-

time Java functionality on board the constrained 

picosatellite CubeSat platform. With strict system 

requirements of low memory footprint, Java functionality 

and hard real-time operation, preliminary results of the 

dual-core processor design are presented with general 

purpose functions using the LEON3 IP core and Java 

specific functions using the JOP IP core. An autonomous 

1. LEON Argument Passing 

Inputs 

Sensors 

LEON3 Info 

Memory Usage 

 

2. MainWrapper 

 

Compute: 

Capability Function 

New Topology 

 

Pass arguments: 

1. Main Host 

2. Backup Hosts 

3. Services required 

 

3. Start JADE Platform 

Jade.Boot 

 
Services 

jade.core.Runtime beginContainer 

jade.core.BaseService 

jade.core.management.AgentManagement 

jade.core.messaging.Messaging 

jade.core.mobility.AgentMobility  

jade.core.event.Notification 

jade.core.messaging.MessagingService 

clearCachedSlice 

jade.core.AgentContainerImpl joinPlatform 

Figure 9. Reconfigurable Network Topology Algorithm Overview 
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Agent based network topology reconfigurability 

procedure is also presented which takes into account the 

current state of the satellite cluster at network level and 

any local resources or loads at node level for future 

distributed satellite management operations.  
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